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Abstract
In a recent communication (Chakrabarti A and Mookerjee A 2001 J. Phys.:
Condens. Matter 13 10 149) we have introduced the generalization of the
augmented space recursion (ASR) (Saha T, Dasgupta I and Mookerjee A 1994
J. Phys.: Condens. Matter 6 L245) technique for systems with many atoms per
unit cell. In this paper we have justified the convergence properties of ASR by
studying the convergence of various moments of local density of states and other
physical quantities like Fermi energy and band energy of some ordered systems
like V, Cu, Ni and Cu3Au. We have also looked at the convergence of the
magnetic moment of Ni, which is very sensitive to numerical approximations.
Finally we have tried to establish that the recursion method is equally applicable
for studying properties of ordered systems.

1. Introduction

The recursion method was introduced by Haydock et al [7, 8] as an elegant alternative to the
then widely prevalent reciprocal space band structure techniques. The method was based on
a completely real space formalism. It did not invoke any lattice translation symmetry and
its consequent Bloch theorem. It was proposed as an ideal tool for studying the electronic
properties of systems with broken symmetry [1]: surfaces and systems with substitutional and
topological disorder. Although the recursion method was introduced almost thirty years ago,
there still remains a residual scepticism about the accuracy and practical applicability, certainly
for ordered systems.

In this paper we shall first carry out recursion calculations based on the tight-binding
linearized muffin-tin orbitals (TB-LMTO) [2–4] method for various ordered metals and
compounds. Then, in order to establish the fact that the recursion method is equally acceptable
for predicting properties of the ordered systems studied, we shall compare our results with
standard reciprocal space methods based also on the same TB-LMTO technique. Finally we
shall carry out a thorough analysis of the convergence and accuracy of the technique. The aim
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will be to handle convincingly the possible errors in the method, with a view of minimizing
them within our tolerance limits.

2. The recursion method within a TB-LMTO basis

The recursion method provides an elegant and computationally efficient formalism for
calculating the local electronic structure properties of elements and compounds. It is a
real space technique, by which elements of the Green function associated with a sparse
representation of a Hamiltonian are obtained by transforming the representation to a tridiagonal
form. This is done by constructing a new orthonormal basis set |n} from the older one |n〉 by
the following three term recursion formula:

|n + 1} = H |n} + αn|n} + β2
n−1|n− 1} (1)

with the initial choice |1} = |RLα〉, and β2
0 = 1. These terms are explained in connection

with the TB model described below.
The choice is guided by the fact that we are interested in obtaining GRLα,RLα(E). The

coefficients αn and βn are obtained by imposing the ortho-normalizability condition of the new
basis set. They are given by:

{n|H |n}
{n|n} = αn

{n|H |n− 1}
{n|n} = β2

n−1 = {n− 1|H |n} {n|H |m} = 0. (2)

Now the diagonal elements of the Green function can be calculated from the following
expression:

GRLα,RLα(z) = 1

z− α1 − β2
1

z−α2− β2
2

z−α3−
...

. (3)

The local density of states (LDOS) is related with the Green function by the following
relation:

n(E) = − 1

π
Imm G(E − iδ+). (4)

In practice, the infinite continued fraction expression is evaluated to a finite number of steps.
Haydock [6] has shown that the contributions from the continued fraction coefficients αn and
βn can be mapped onto self-avoiding walks on the underlying lattice. He has shown that the
dominant contributions come from those paths which wind around the initial starting state.
This allows one to work on a subspace of the total Hilbert space in which the Hamiltonian is
defined i.e., a finite sized cluster about the starting state.

As has been mentioned earlier, since the recursion method needs a localized basis for its
operation, one can perform recursion in the framework of the TB-LMTO formalism. We now
describe very briefly the methodology of recursion in the framework of the TB-LMTO.

The second order TB-LMTO Hamiltonian is written in terms of potential parameters and
the screened structure matrix. It is given by

H(2) = Eν + h− hoh (5)

where,

h =
∑
RLα

(C̃RLα − ẼRLα)PRLα +
∑
RLα

∑
R′L′α′

∆̃1/2
RLα SRLα,R′L′α′ ∆̃1/2

R′L′α′TRLα,R′L′α′ (6)
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• C, o and� are potential parameters of the TB-LMTO method, these are diagonal matrices
in the angular momentum indices. Also o−1 has the dimension of energy and is a measure
of the energy window around Ẽ within which the approximate Hamiltonian H2 is reliable.

• R denotes a cell position label associated with a TB-LMTO basis and L = (�mms) is the
composite angular momentum index. α denotes an atom in the Rth cell whose position is
R + ξα .

• SRLα,R′L′α′ is called structure matrix, which depends only on the geometry of the underlying
lattice.

• PRLα and TRLα,R′L′α′ are the projection and transfer operators in Hilbert spaceH spanned
by tight-binding basis {|RLα〉}: PRLα = |RLα〉〈LRα| and TRLα,R′L′α′ = |RLα〉〈R′L′α′|.
Using the definition of Green function we can write

GRLα,RLα(E) = 〈R,L, α|(EÎ − Ĥ(2))−1|R,L, α〉.

3. Errors in the recursion method

We shall now study the various approximations necessary for practical applications of the
recursion method and the consequent errors. We shall illustrate the nature of convergence of
various calculated physical quantities which are basic for any electronic structure calculation.
This study of convergence is essential because otherwise we will not be able to set the cut-
offs of various parameters like number of shells in real space, recursion levels and so on, for
numerical calculations and ensure that our numerical results are within our tolerance window.

Before we set out to analyse the errors in the method, let us first compare the results for the
density of states for Cu, Cu3Au, V and Ni as obtained from a forty-step recursion carried out
on an exact twenty shell real-space map. The choice of the systems is deliberate. Cu is a full
d-shell noble metal, V is a half-filled metal in the lower end of the transition series while Ni is
a magnetic transition metal. Cu3Au is an ordered alloy which is stable in the L12 arrangement
on a fcc lattice, figures 1 and 2 show this comparison.

For Cu and Cu3Au most of the detailed features of the density of states calculated from
the recursion calculations match with the k-space results. As expected, the k-space results
show sharper structures. The Fermi energies in both cases match to within a few hundredths
of a rydberg. Both the majority and minority band density of states for ferromagnetic Ni are
reproduced excellently in the recursion calculations. The agreement is equally good for V up to
the Fermi energy. The unoccupied part of the band shows disagreement. However, it must be
understood that the recursion is done with the second order Hamiltonian in the most localized
representation of the TB-LMTO, while the k-space calculations are done with the orthogonal
representation. A higher order recursion calculation should improve the unoccupied part of
the band considerably.

How good are our results? When we talk of convergence of the recursion method, we have
to be careful in stating precisely what we mean. Finite space approximants to Green functions
do not converge for real energy values. This problem arises in every computational method, as
noted by [9]. The problem definitely arises in the usual k-space integration techniques, where
methods using either complex energies or complex k-s have been attempted. The cause of this
non-convergence is that an arbitrary small perturbation, like adding a single atom to a large
but finite system, can shift all eigenvalues of the system. This causes an infinite change in the
Green function near its corresponding poles. Thus, the precise meaning of the convergence of
the recursion should imply rather the convergence of physical quantities built out of it. Most
physical quantities are averages over the spectrum of the type:

F(E) =
∫ EF

E0

f (E′) n(E′) dE′
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Figure 1. The density of states for Cu and Cu3Au using (top) the recursion method and (bottom)
the k-space method.

E0 is the lower band edge, and f (E) is any smooth, well behaved function of E. It is the
convergence of these quantities which will decide whether the recursion is convergent or not.
For example, the Fermi energy is defined by∫ EF

−E0

n(E′) dE′ = ne

where ne is the total number of electrons. While the band energy is

U =
∫ EF

−E0

E′ n(E′) dE′.

We shall study, in general, the convergence of indefinite integrals of the kind

Mk(E) =
∫ E

−∞
(E′)k n(E′) dE′.

The integrand E′k is monotonic and well behaved within the integration range. A measure of
the root-mean-square error in the moments is

�k =
{

1

EU − E0

(∫ EU

E0

(δMk(E))
2 dE −

(∫ EU

E0

δMk(E) dE

)2)}1/2

. (7)

Errors can arise in the recursion procedure because of two distinct sources: (i) the error that
arises because we carry out a finite number of recursion steps and then terminate the continued
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Figure 2. The density of states for Ni and V using (top) the recursion method and (bottom) the
k-space method.

fraction using one of the available terminators (ii) the error that arises because we choose a
large but finite part of the nearest-neighbour map and ignore the part of the augmented space
very far from the starting state. Haydock has justified both these approximations by stating
that (i) if the terminator is chosen so as to reflect the asymptotic behaviour of the continued
fraction, errors should be small, and (ii) since we can write expressions for the continued
fraction in terms of self-avoiding walks on the underlying lattice, long walks are dominated
by those that wind round the starting state and do not go far away from it.

We shall first carry out a simple error analysis of the continued fraction expression for the
Green function because of errors created on the continued fraction coefficients.

The recursion is a two-term recurrence relation. We may therefore generate from this a
pair of linearly independent set of polynomials through the relations:

bn+1Xn+1(E) = (E − an)Xn(E) − bnXn−1

where, Xn(E) is either Pn(E) or Qn(E) according to the initial conditions:

P1(E) = 1 P2(E) = (E − a1)/b2

Q1(E) = 0 Q2(E) = 1.

The approximated Green function in terms of the terminator T (E) is given by:

G(E) = QN+1(E) − bNQN(E)T (E)

b1[PN+1(E) − bNPNT (E)]
.
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The terminator determines entirely the essential singularities of the the spectrum. Reference [9]
showed that a finite composition of fractional linear transformations like the one above can at
most add a finite number of poles to the spectrum. The essential singularities of the exactG(E)
and T (E) coincide. The fractional linear transformation redistributes the spectral weights over
the spectrum.

Let us now assume that we make errors {δan, δbn} in the corresponding continued fraction
coefficients. If we now start generating the orthogonal polynomials, starting from the exact
initial conditions, but with the errors in the continued fraction coefficients, we shall obtain a
pair of sets {P̃n} and {Q̃n}. In general we shall have,

P̃n(E) = (1 + An(E))Pn(E) + Bn(E)Qn(E).

If we substitute this back into the recurrence relation and keep only the first order terms in the
errors,

An(E) = {δan[Pn+1(E)Qn+1(E)] + δbn[Pn(E)Qn+1(E) + Pn+1(E)Qn(E)]}/b1

Bn(E) = {−δanPn+1(E)
2 − δbn[2 Pn(E)Pn+1(E)]}/b1.

Using the above and the expression for the LDOS, we find that the first order relative error
produced in the LDOS

δn(E)

n(E)
= −2

[{ ∞∑
n=1

An(E)

}
+ b1R(E)

{ ∞∑
n=0

Bn(E)

}]

where R(E) = Re G(E). If we define the weighted Hilbert transforms of Pn(E) as the
so-called associated functions:

Qn(E) = Re
{∫ ∞

−∞

Pn(E
′)n(E′)

E − E′ dE′
}
.

These associated functions are also solutions of the three-term recursion. They are not
polynomials, but are nevertheless orthogonal to the set Pn(E).

In terms of these, the error in the density of states is:

δn(E)

n(E)
= 2

b1

{ ∞∑
n=1

[δanPn+1(E)Qn+1(E) + 2 δbn+1Pn+1Qn+2]

}
. (8)

If the firstN continued fraction coefficients are exact, that is in case we carry out our recursion
on aN -shell neighbour map up toN steps and then terminate, the error in the various moment
functions are:

δMk(E) = +
∞∑
n=N

{δanA(k)n (E) + δbn+1B
(k)
n (E)} (9)

where,

A(k)n (E) = 2

b1

∫ E

−∞
Pn+1(E

′)Qn+1(E
′)(E′)kn(E′) dE′

B(k)n (E) = 4

b1

∫ E

−∞
Pn+1(E

′)Qn+1(E
′)(E′)kn(E′) dE′.

From this expression and equation (6) we can obtain an expression for the overall error in the
moments. Numerical results for the errors in the moment functions are shown in figure 3. The
convergence in Fermi and band energies with number of recursion steps are shown in figures 4
and 5.

These are calculated on a 20 shell neighbour map and up to 40 steps in recursion. The
figures clearly illustrate the convergence of the procedure with increasing recursion steps, as
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Figure 3. The root mean square errors in the first (full lines), second (dashed lines) and third
(dashed dotted lines) moments of the density of states as functions of the recursion steps.
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surmised by Haydock. As expected the higher moments converge more rapidly. The rapid
convergence of higher moments is at the basis of the reproduction of most of the density of
states shape in an approximate recursion procedure. It should be noted, however, that as we
carry out recursion beyond 40 steps, very soon the procedure becomes unstable. This instability
arises due to two sources: (i) we have carried out recursion on a 20 shell neighbour-map. As
we go beyond 20 steps of recursions, finite size effects begin to show up. Numerically till
40 steps these errors are tolerable. Beyond 45 they lead to instability. We can control this
by increasing the size of the neighbour-map. (ii) Numerical cumulative errors lead to the
loss of orthogonality in the recursion generated basis. This can be controlled by deliberately
orthogonalizing after every 20 steps or so. In the presence of disorder, the sharp structures in
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the density of states are smoothed by finite life-time effects. The convergence of the higher
moments is even more rapid. The above analysis in ordered systems is therefore in a worst
scenario situation.

Figure 7 shows the convergence of the magnetic moment of Ni as a function of the number
of recursion steps towards the value 0.6 µB obtained from k-space techniques. Magnetic
moment is a physical quantity which is very sensitive to the errors in numerical approximations.
The figure shows that within 35–40 recursion steps on a 20 shell real-space map, the magnetic
moment has converged within our error tolerance.

It is evident from the above analysis that the size of the neighbour map and the number of
recursion steps required can vary from system to system. For every situation, we have to carry
out this error analysis before we can rely on our numerical results with a degree of satisfaction.

4. Remarks and conclusion

In this paper we have compared the results obtained from the recursion method with that
obtained from the reciprocal space method and argued that the former is also an accurate
technique to calculate electronic structure calculation.

Finally we have analysed the convergence of the recursion technique in the worst case
scenario of no disorder and have argued that disorder smooths out structure in the density of
states, so that for disordered alloys the convergence of the moments is even faster.
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